Recent Publications

Restricted epigenetic inheritance of H3K9 methylation

See Audergon et al (2015) Science.

Posttranslational histone modifications are believed to allow the epigenetic transmission of distinct chromatin states, independently of associated DNA sequences. Histone H3 lysine 9 (H3K9) methylation is essential for heterochromatin formation; however, a demonstration of its epigenetic heritability is lacking. Fission yeast has a single H3K9 methyltransferase, Clr4, that directs all H3K9 methylation and heterochromatin. Using releasable tethered Clr4 reveals that an active process rapidly erases H3K9 methylation from tethering sites in wild-type cells. However, inactivation of the putative histone demethylase Epe1 allows H3K9 methylation and silent chromatin maintenance at the tethering site through many mitotic divisions, and transgenerationally through meiosis, after release of tethered Clr4. Thus, H3K9 methylation is a heritable epigenetic mark whose transmission is usually countered by its active removal, which prevents the unauthorized inheritance of heterochromatin.

Sequence Features and Transcriptional Stalling within Centromere DNA Promote Establishment of CENP-A Chromatin

See Catania et al (2015) PLoS Genetics.

Centromere sequences are not conserved between species, and there is compelling evidence for epigenetic regulation of centromere identity, with location being dictated by the presence of chromatin containing the histone H3 variant CENP-A. Paradoxically, in most organisms CENP-A chromatin generally occurs on particular sequences. To investigate the contribution of primary DNA sequence to establishment of CENP-A chromatin in vivo, we utilised the fission yeast Schizosaccharomyces pombe. CENP-ACnp1 chromatin is normally assembled on ∼10 kb of central domain DNA within these regional centromeres. We demonstrate that overproduction of S. pombe CENP-ACnp1 bypasses the usual requirement for adjacent heterochromatin in establishing CENP-ACnp1 chromatin, and show that central domain DNA is a preferred substrate for de novo establishment of CENP-ACnp1 chromatin. When multimerised, a 2 kb sub-region can establish CENP-ACnp1 chromatin and form functional centromeres. Randomization of the 2 kb sequence to generate a sequence that maintains AT content and predicted nucleosome positioning is unable to establish CENP-ACnp1 chromatin. These analyses indicate that central domain DNA from fission yeast centromeres contains specific information that promotes CENP-ACnp1 incorporation into chromatin. Numerous transcriptional start sites were detected on the forward and reverse strands within the functional 2 kb sub-region and active promoters were identified. RNAPII is enriched on central domain DNA in wild-type cells, but only low levels of transcripts are detected, consistent with RNAPII stalling during transcription of centromeric DNA. Cells lacking factors involved in restarting transcription-TFIIS and Ubp3-assemble CENP-ACnp1 on central domain DNA when CENP-ACnp1 is at wild-type levels, suggesting that persistent stalling of RNAPII on centromere DNA triggers chromatin remodelling events that deposit CENP-ACnp1. Thus, sequence-encoded features of centromeric DNA create an environment of pervasive low quality RNAPII transcription that is an important determinant of CENP-ACnp1 assembly. These observations emphasise roles for both genetic and epigenetic processes in centromere establishment.

Pan-Species Small Molecule Disruptors of Heterochromatin-Mediated Transcriptional Gene Silencing

See Castonguay et al (2014) Mol Cell Biol.

Heterochromatin underpins gene repression, genome integrity and chromosome segregation. In the fission yeast, Schizosaccharomyces pombe, conserved protein complexes effect heterochromatin formation via RNA interference-mediated recruitment of a histone H3 lysine 9 methyltransferase to cognate chromatin regions. To identify small molecules that inhibit heterochromatin formation, we performed an in vivo screen for loss of silencing at a dominant selectable kanMX reporter gene embedded within fission yeast centromeric heterochromatin. Two structurally unrelated compounds, HMS-I1 and HMS-I2, alleviated kanMX silencing and decreased repressive H3K9 methylation levels at the transgene. The decrease in methylation caused by HMS-I1 and HMS-I2 was observed at all loci regulated by histone methylation, including centromeric repeats, telomeric regions and the mating-type locus, consistent with inhibition of the histone deacetylases (HDACs) Clr3 and/or Sir2. Chemical-genetic epistasis and expression profiles revealed that both compounds affect the activity of the Clr3-containing Snf2/HDAC repressor complex (SHREC). In vitro HDAC assays revealed that HMS-I1 and HMS-I2 inhibit Clr3 HDAC activity. HMS-I1 also alleviated transgene reporter silencing by heterochromatin in Arabidopsis and a mouse cell line, suggesting a conserved mechanism of action. HMS-I1 and HMS-I2 bear no resemblance to known inhibitors of chromatin-based activities, and hence represent novel chemical probes for heterochromatin formation and function.

Long non-coding RNA-mediated transcriptional interference of a permease gene confers drug tolerance in fission yeast

 See Ard et al (2014) Nat Commun.

Most long non-coding RNAs (lncRNAs) encoded by eukaryotic genomes remain uncharacterized. Here we focus on a set of intergenic lncRNAs in fission yeast. Deleting one of these lncRNAs exhibited a clear phenotype: drug sensitivity. Detailed analyses of the affected locus revealed that transcription of the nc-tgp1 lncRNA regulates drug tolerance by repressing the adjacent phosphate-responsive permease gene transporter for glycerophosphodiester 1 (tgp1(+)). We demonstrate that the act of transcribing nc-tgp1 over the tgp1(+) promoter increases nucleosome density, prevents transcription factor access and thus represses tgp1(+) without the need for RNA interference or heterochromatin components. We therefore conclude that tgp1(+) is regulated by transcriptional interference. Accordingly, decreased nc-tgp1 transcription permits tgp1(+) expression upon phosphate starvation. Furthermore, nc-tgp1 loss induces tgp1(+) even in repressive conditions. Notably, drug sensitivity results directly from tgp1(+) expression in the absence of the nc-tgp1 RNA. Thus, transcription of an lncRNA governs drug tolerance in fission yeast.

The RFTS domain of Raf2 is required for Cul4 interaction and heterochromatin integrity in fission yeast

 See White et al (2014) PLoS One.

Centromeric heterochromatin assembly in fission yeast is critical for faithful chromosome segregation at mitosis. Its assembly requires a concerted pathway of events whereby the RNA interference (RNAi) pathway guides H3K9 methylation to target sequences. H3K9 methylation, a hallmark of heterochromatin structure, is mediated by the single histone methyltransferase Clr4 (equivalent to metazoan Suv3-9), a component of the CLRC complex. Loss of or defects in CLRC components disrupts heterochromatin formation due to loss of H3K9 methylation, thus an intact, fully functional CLRC complex is required for heterochromatin integrity. Despite its importance, little is known about the contribution of the CLRC component Raf2 to H3K9 methylation and heterochromatin assembly. We demonstrate that Raf2 is concentrated at centromeres and contrary to other analyses, we find that loss of Raf2 does not affect CENP-ACnp1 localisation or recruitment to centromeres. Our sequence alignments show that Raf2 contains a Replication Foci Targeting Sequence (RFTS) domain homologous to the RFTS domain of the human DNA methyltransferase DNMT1. We show that the Raf2 RFTS domain is required for centromeric heterochromatin formation as its mutation disrupts H3K9 methylation but not the processing of centromeric transcripts into small interfering RNAs (siRNAs) by the RNAi pathway. Analysis of biochemical interactions demonstrates that the RFTS domain mediates an interaction between Raf2 and the CLRC component Cul4. We conclude that the RFTS domain of Raf2 is a protein interaction module that plays an important role in heterochromatin formation at centromeres.

Eic1 links Mis18 with the CCAN/Mis6/Ctf19 complex to promote CENP-A assembly

See Subramanian et al (2014) Open Biology.

CENP-A chromatin forms the foundation for kinetochore assembly. Replication-independent incorporation of CENP-A at centromeres depends on its chaperone HJURP(Scm3), and Mis18 in vertebrates and fission yeast. The recruitment of Mis18 and HJURP(Scm3) to centromeres is cell cycle regulated. Vertebrate Mis18 associates with Mis18BP1(KNL2), which is critical for the recruitment of Mis18 and HJURP(Scm3). We identify two novel fission yeast Mis18-interacting proteins (Eic1 and Eic2), components of the Mis18 complex. Eic1 is essential to maintain Cnp1(CENP-A) at centromeres and is crucial for kinetochore integrity; Eic2 is dispensable. Eic1 also associates with Fta7(CENP-Q/Okp1), Cnl2(Nkp2) and Mal2(CENP-O/Mcm21), components of the constitutive CCAN/Mis6/Ctf19 complex. No Mis18BP1(KNL2) orthologue has been identified in fission yeast, consequently it remains unknown how the key Cnp1(CENP-A) loading factor Mis18 is recruited. Our findings suggest that Eic1 serves a function analogous to that of Mis18BP1(KNL2), thus representing the functional counterpart of Mis18BP1(KNL2) in fission yeast that connects with a module within the CCAN/Mis6/Ctf19 complex to allow the temporally regulated recruitment of the Mis18/Scm3(HJURP) Cnp1(CENP-A) loading factors. The novel interactions identified between CENP-A loading factors and the CCAN/Mis6/Ctf19 complex are likely to also contribute to CENP-A maintenance in other organisms.